Adding STAR/ALICE UE subtraction routine to sPHENIX

Rosi Reed

May 15, 2017

Underlying Event (UE) Subtraction

- As we all know, in HI collisions the soft UE event affects all jet observables
 - Combinatorial jets
 - Important issue to discuss \rightarrow beyond the scope of this talk
 - Background underneath "true" signal jets
 - Smears jet $p_T \rightarrow JER$
 - Adds energy/momentum to the jet → JES
- Subtraction techniques correct the JES for the UE, necessary for unfolding and intreptation
 - Non-diagonal Response Matrices do not yield consistent and stable results

Underlying Event (UE) Subtraction

- During the separation of PHENIX and sPHENIX software the UE subtraction was not included
 - MIE studies were based on this UE subtraction
- This is required to make real Au+Au jet performance plots
- Ideally multiple UE subtraction methods would be available, as some observables may perform better with one versus another
- Here I propose incorporating the "STAR/ ALICE" Method

ALICE/STAR background subtraction Method Jet Median Approach

- ρ : median of $p_{T,kTjet} / A_{kTjet}$
 - 2 leading jets removed
 - Determined event-byevent
- ρ not corrected for detector effects
 - Model independent
 - Data driven
- Subtracted on a jet-byjet basis $p_{T,jet}^{unc} = p_{T,jet}^{rec} - \rho A$

* May be sensitive to jet fragments outside $k_{\scriptscriptstyle T}$ jet cone

JHEP 1203:053, 2012 (arxiv:1201.2423)

ALICE/STAR background subtraction Method Jet Median Approach

- The background depends on
 - Centrality
 - Event Plane
 - Constituent cut
- One can modify ρ using the EP angle and v_2
- One question is what is the best R value to use
 - In HI collisions a small R is used, more susceptible to jet fragments outside the $k_{\scriptscriptstyle T}$ cone for ρ
 - 2 Leading jets not enough?
 - Larger R for background → Acceptance/boundary issues

ALICE/STAR background subtraction Method Jet Median Approach

- Already incorporated into fastjet!!
 - This makes implementation technically straight forward
- Does not require any "constituents" to be altered
 - Can be thought of as almost an after burner
- Will require some changes to core sPhenix jet classes
 - More later
 - Ideally set as an "option" that someone can use
 - Only works on uncorrected jet structures (AFAIK)

ALICE/STAR background subtraction Method Jet Median Approach – Toy Model

PYTHIA run with

- $-15 < p_{T,hat} < 25 \text{ GeV}$
- "Background" thrown with a Boltzmann distribution
 - $< p_T > = 0.5 \text{ GeV}$
 - 1000 background particles
- Jet finder parameters

$$-R = 0.4$$

$$-p_{T,min} = 0.150$$

JES offset without subtraction

$$p_{T,jet}^{Reco} > 5$$

$$p_{T,jet}^{Part} > 10$$

$$|dR| < 0.2$$

ALICE/STAR background subtraction Method Jet Median Approach – Toy Model

- PYTHIA run with
 - $-15 < p_{T,hat} < 25 \text{ GeV}$
 - "Background" thrown with a Boltzmann distribution
 - $< p_T > = 0.5 \text{ GeV}$
 - 1000 background particles
- Jet finder parameters

$$-R = 0.4$$

$$-p_{T,min} = 0.150$$

JES offset without subtraction

$$p_{T,jet}^{\text{Re}co} > 5$$

$$p_{T,iet}^{Part} > 10$$

ALICE/STAR background subtraction Method Jet Median Approach – FJ Implementation

- JetMedianBackgroundEstimator bge(rho_range, jet_bkgd_def, area_def);
 - rho_range → Selector, acceptance in eta/phi
 - jet_bkgd_def → Algorithm to be used (k_T, R ~ 0.4)
 - area_def → Active area
- Note: Any fastjet acceptance selector can be used with this algorithm
 - Detector acceptance (R away from boundary?)
 - Removal of hardest jets?
 - $-\eta/\phi$ strips?

ALICE/STAR background subtraction Method Jet Median Approach – FJ Implementation

- JetMedianBackgroundEstimator bge(rho_range, jet_bkgd_def, area_def);
- Subtractor subtractor(&bge);
 - Defines the subtractor with this background defintion
 - Multiple subtractors are allowed in an analysis
- bge.set_particles(backparticles);
 - Backparticles → Vector of PseudoJet
 - NOTE: Do *not* use pre-clustered particles here
 - Can use selectors on the vector beforehand
 - P_{T,min} is common → Same criteria needed for signal and background

ALICE/STAR background subtraction Method Jet Median Approach – FJ Implementation

- JetMedianBackgroundEstimator bge(rho_range, jet_bkgd_def, area_def);
- Subtractor subtractor(&bge);
- bge.set_particles(backparticles);
- Next one runs over the collection of signal jets (clustered in the usually way)
 - PseudoJet jet = jets_signal[i];
 - PseudoJet subtracted_jet = subtractor(jet);
 - Note: This is $p_{T,sub} = p_{T,reco} \rho A$, if $p_{T,sub} < 0$ then FJ sets $p_{T,sub}$ to 0

ALICE/STAR background subtraction Method Jet Median Approach – Case Study

PYTHIA run with

- $-15 < p_{T,hat} < 25 \text{ GeV}$
- "Background" thrown with a Boltzmann distribution
 - $< p_T > = 0.5 \text{ GeV}$
 - 1000 background particles
- Jet finder parameters

$$-R = 0.4$$

$$-p_{T,min} = 0.150$$

JES → Much closer with subtraction!

$$p_{T,jet}^{Reco} > 5$$

$$p_{T,jet}^{Part} > 10$$

$$|dR| < 0.2$$

ALICE/STAR background subtraction Method Jet Median Approach – Case Study

PYTHIA run with

- $-15 < p_{T,hat} < 25 \text{ GeV}$
- "Background" thrown with a Boltzmann distribution
 - $< p_T > = 0.5 \text{ GeV}$
 - 1000 background particles
- Jet finder parameters

$$-R = 0.4$$

$$-p_{T,min} = 0.150$$

JES → Much closer with subtraction!

$$p_{T,jet}^{\text{Re}co} > 5$$
 $p_{T,jet}^{Part} > 10$
 $|dR| < 0.2$

- Strategy

 This should be implemented in an unobtrusive fashion
- Event-wise quantity ρ (bge.rho())
 - At least to start
 - "Who" should own this?
- Using Fun4All_G4_sPHENIX.C, the jet evaluator returns 2 Ntuples
 - reco jet => max truth jet
 - truth jet => best reco jet
 - Initial implementation → "owned" by the jet

- Event-wise quantity $\rho \rightarrow$ Who should own this?
- Jet evaluator returns 2 Ntuples w/jet parameters
 - Propose to save both A and ρ
 - Later implementations may want to include v₂ modulation
 - Subtraction performed "by hand"
 - Allows negative p_T jets in analysis (generally combinatorial jets)
 - Allows bg to be calculated later (or not) and added to the jet collection without modifying any initial parameters
 - Another option is to overwrite the jet kinematics
 - I really don't like this one
 - Or save p_{T.sub} alone

- Event-wise quantity $\rho \rightarrow$ Who should own this?
 - Jets own ρ
- This would require changes to:
 - coresoftware/simulation/g4simulation/g4jets/JetV1.h
 - Getter and setter for Area and ρ
 - Default negative → No accidental usage
 - Add Area and ρ as member variables
 - Getter for "subtracted" p_T
 - coresoftware/simulation/g4simulation/g4jets/JetV1.C
 - Getter for "subtracted" p_™
 - Why do we have JetV1 and Jet? Was a merge supposed to happen at some point?

- Would require new files:
 - "UEreco.h, UE.recoC" + "UE.h, UE.C"
 - UE.h and UE.C would be quite simple
 - coresoftware/simulation/g4simulation/g4jets/
 - Think about naming convention
 Multiple UE routines
- Implementation would be similar to JetReco
 - Use fast jet on input objects (towers, whatever)
 - Add ρ to an input jet stream (select again hard jets)
 - Place PHObject UE on "top node" → to the DST
- Note: This should be done so as to allow 4-vector UE determination, etc in the future

- This would require no changes to coresoftware/ simulation/g4simulation/g4jets/JetReco.*
 - Background method will attach ρ to jets directly
 - In fact, most header files should remain the same as the change will live mostly in the Jet and in the separate UE algorithm
- This would require a small change to:
 - macros/macros/g4simulations/ Fun4All_G4_sPHENIX.C
 - Bool switch for background (default off)
 - In jet reco loop -> Call UEreco (if bool is on)

- This would require no changes to coresoftware/ simulation/g4simulation/g4jets/JetReco.*
 - Background method will attach ρ to jets directly
 - In fact, most header files should remain the same as the change will live mostly in the Jet and in the separate UE algorithm
- This would require a small change to:
 - macros/macros/g4simulations/ Fun4All_G4_sPHENIX.C
 - Bool switch for background (default off)
 - In jet reco loop -> Call UEreco (if bool is on)

- Lastly (I believe) this will require changes to:
 - coresoftware/simulation/g4simulation/g4eval/ JetEvaluator.C
- Mainly we need to add a gptue or something of this nature to the Ntuple
 - And in the body, include it using the getter that will be part of the Jet class
- These changes will allow a new person to run with this UE subtraction, and should make it possible for anyone to incorporate it into her code

ALICE/STAR background subtraction Method Lightweight Background Methods

- Testing background subtraction methods/HI observables require a reasonable background
 - It's not always practical to run HIJING + PYTHIA
 - Not necessary for initial checks of an observable
 - Or to test UE subtraction funcationality
- Add ability to run fluctuating background
 - For instance, add a random generated gaussian to tower ADC prior to conversion
 - Harder to do with tracking, perhaps should wait on this

Conclusions/timeline

- I am at BNL all week → A time for productivity!
- Add UE methods by Wednesday (new code, won't effect anyone)
- Locally (to my machine) change core codes by Friday
 - Verify over the weekend that these changes do not effect anything else
 - Perhaps a volunteer would help!
- Push on Monday ... Maybe we use a "V2" or something like this for that week so others can confirm

Conclusions/timeline

- Push on Monday
- Need to evaluate with a realistic background and unfolding
 - UE functionality with this method will be "there"
 but it will also need to be optimized, etc.
 - Next week I will spend time insuring that optimization "tweaks" are options that can be manipulated so we can freeze the code
- Once the UE is in, I will work on a lightweight background method, unless someone else would like to grab that!